EECS 398: Computing for Computer Scientists

Practice Final Exam

Honor Code

I have neither given nor received any unauthorized aid on this exam.

(Print Name) (Sign Name)

«— WRITE THIS VERY VERY VERY CLEARLY, PLEASE.

(unigname)

You have 80 minutes to complete this exam.
Mark your answers clearly and write neatly. If we can’t read it, we can’t grade it.
Remember to fill out your Name and Unigname on every page of this exam.

If you are uncertain about what a question is asking, state your assumptions and give the
best answer possible.

Question 1 /2 Question 6 /2
Question 2 /2 Question 7 /2
Question 3 /2 Question 8 2/2
Question 4 /2 Question 9 /2
Question 5 /2 | Question 10 /2

Final Score /20

Name: Unigname:

1. Introduction and Virtual Machines

When setting up the virtual machine for this class, we had you install the Guest Additions.
Give an example of feature enable enabled by Guest Additions.

The readings presented two opposing views on “command-line bullshittery”.
Give an argument either for or against learning modern “command-line bullshittery”
based on your experiences in this class.

2. Unix / Scripting

When you type “Is” into a terminal, the program that actually runs is “/bin/Is”.
What environment variable helps turn “Is” into “/bin/Is”?

We introduced several special shell variables over the course of the term.
Pick any one of “$?”, “$_”, or “$#” and explain what that variable does.

C4CS W16 Practice Final Exam

Name:

3. Editors

Unigname:

Explain how to do each of the following operations in these editors

vim

Emacs

Save File

Save File

Quit without saving edits

Quit without saving edits

Save and quit (two commands fine)

Save and quit (two commands fine)

Find the text “TODO”

Find the text “TODO”

Fill in the missing part of the following command

$ cat input.txt
One one one

$ sed s/ / / input.txt # replace all ‘one’ with ‘two’

One two two

C4CS W16 Practice Final Exam

Name: Unigname:

4. Revision Control Basics and Git

git add moves a file from the to the

git commit moves a file from the to the

The following is an excerpt from a terminal session, fill in the missing commands:

$ mkdir /tmp/g

$ cd /tmp/g

$ vi main.c

$ gcc main.c

$

Initialized empty Git repository in /tmp/g/.git/
$

On branch master

Initial commit

Untracked files:
(use "git add <file>..." to include in what will be committed)

main.c

nothing added to commit but untracked files present (use "git add" to
track)

$

$

On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: main.c

C4CS W16 Practice Final Exam

Name: Unigname:

$

[master (root—-commit) 6ce3lc7] Initial Commit

1 file changed, 2 insertions (+)
create mode 100644 main.c

$

On branch master

nothing to commit, working directory clean

5. Shells Il, Unix Tools & Philosophy

Given this file list:

$ 1s

Binary tree.cpp filter test recursive.cpp test helpers.h
Binary tree.h filter test.cpp recursive.h tree insert test
Makefile p2-tests simple test tree insert test.cpp
Recursive list.cpp p2-tests.cpp simple test.cpp

Recursive list.h P2.cpp simple test.out.correct

eecs280-wlb-p2.tgz p2.h test _helpers.cpp

Using shell glob(s) complete the following command:

$ 1s
filter test p2-tests simple test tree insert test

Using regular expressions, complete the following command:

$ 1s | grep

filter test p2-tests simple test tree insert test

You may find some parts of the grep man page helpful for this. You may add additional pipes if
it is helpful.

-C[num, --context=num]
Print num lines of leading and trailing context surrounding each
match. The default is 2 and is equivalent to -A 2 -B 2. Note:
no whitespace may be given between the option and its argument.
-c, —-count
Only a count of selected lines is written to standard output.
-v, —--invert-match
Selected lines are those not matching any of the specified pat-
Terns.
-w, —-word-regexp
The expression 1s searched for as a word (as if surrounded by
[[:<:]]" and “[[:>:]]'; see re format(7)).

C4CS W16 Practice Final Exam

Name: Unigname:

6. Build Systems

The following is a snippet from the Makefile in EECS 280 W15 project that we used the term:

simple test: simple test.cpp p2.cpp Recursive list.cpp Binary tree.cpp \
recursive.cpp test helpers.cpp
g++ -Wall -Werror -pedantic -02 \
simple test.cpp p2.cpp Recursive list.cpp Binary tree.cpp \
recursive.cpp test helpers.cpp -o simple test

After building, a student edits “simple_test.cpp” and re-runs make.

Does make rebuild “simple_test”, why or why not?

After building, a student edits “p2.h”, which is #include’'d by p2.cpp, and re-runs make.

Does make rebuild “simple_test”, why or why not?

7. Debuggers

During a debugging session, gdb prints...

(gdb) run

Breakpoint 2, main () at test.c:11

11 temp = add (values[7 1, values[k]);
(gdb)

If you type “next”, gdb will...
A. Enter, but not execute, the add() function

B. Execute the whole add() function
C. Printan error

C4CS W16 Practice Final Exam

Name: Unigname:

You are debugging the following program with gdb:

(no, this is not a very useful program)

S cat main.c | nl -ba
#include <stdio.h>

#ifdef NDEBUG

#define DBG(...)

#else

#define DBG(...) printf(VA ARGS)
#endif

0 J o O w N

Ne]

int recurse(int add me) {

10 DBG ("add me: %d\n", add me);
11 if (add me == 1) {

12 return add me;

13 }

14 return recurse (add me + add me);
15}

16

17 int main () {

18 printf ("$d\n", recurse(2));
19 }

20

When you run the program, this is the output:

$ gcc main.c && ./a.out

add me: 2

add me: 4

add me: 8

add me: 16

[.. many lines skipped ..]
add me: 0

add me: 0

add me: 0

Segmentation fault: 11

At some point, add_me became 0 and never stopped. If you then run your program under gdb,
what command can you give gdb to stop your program once add_me first becomes 0?

$ gdb -q ./a.out
Reading symbols from ./a.out...(no debugging symbols found)...done.

(gdb)

C4CS W16 Practice Final Exam

Name: Unigname:

8. Spring Break

Just kidding. Who asks questions during spring break? That’s just cruel.

9. Using Git Effectively

The “git branch” command...
Circle all that apply

A. Creates a new commit

B. Changes the contents of the working directory
C. Changes the contents of the staging area
D. Changes the contents of the .git folder
E. Creates a new “pointer” to a commit

The “git checkout” command...
Circle all that apply

A. Creates a new commit

B. Changes the contents of the working directory
C. Changes the contents of the staging area
D. Changes the contents of the .git folder
E. Creates a new “pointer” to a commit

10. Profiling

Your code doesn’t produce the output you were expecting, the best tool to check and
track it down is:

gprof
valgrind
gdb
gcov

oo W

You're setting up your code for profiling using the GNU profiler, aka “gprof”, so you add “-pg” to
the compiler flags when you build your program.
Profile data is stored in a file named “gmon.out”, what generates the “gmon.out” file?

A. The gprof utility, i.e. running, gprof myprogram
B. Your program itself, i.e. running, . /myprogram
C. The gcov utility, a companion utility that helps profiling, i.e. running, gcov myprogram

C4CS W16 Practice Final Exam

