
Debuggers

	Pat	Pannuto	/	Marcus	Darden

http://creativecommons.org/licenses/by/4.0/
http://patpannuto.com/


Administrivia
Check	the	score!	Turning	in	Advanced	Homeworks...

398	is	an	experimental	course.

Course	evaluations,	PLEASE!



What	Does	gdb	Do?
Yes

Start	your	program	(with	options	and	arguments)
Stop	your	program
Allow	you	to	see	into	registers	and	memory
Allow	you	to	change	values	manually	during	execution



What	Does	gdb	Do?
Yes

Start	your	program	(with	options	and	arguments)
Stop	your	program
Allow	you	to	see	into	registers	and	memory
Allow	you	to	change	values	manually	during	execution

No
MAGIC



How	Do	I	gdb?
To	debug	a	program	with	gdb,	simply	put	 gdb 	in	front	of	the	program,	i.e.:



How	Do	I	gdb?
To	debug	a	program	with	gdb,	simply	put	 gdb 	in	front	of	the	program,	i.e.:

>	./prime	#	running	normally

>	gdb	./prime	#	debugging	the	program	with	gdb



How	Do	I	gdb?
To	debug	a	program	with	gdb,	simply	put	 gdb 	in	front	of	the	program,	i.e.:

>	./prime	#	running	normally

>	gdb	./prime	#	debugging	the	program	with	gdb

One	annoying	gotcha	shows	up	if	the	program	to	debug	takes	any	options.
The	simple	prime	program	does	not,	but	if	it	did:

>	./prime	--imaginary-option	#	running	normally

>	gdb	./prime	--imaginary-option	#	will	not	work

gdb:	unrecognized	option	'--imaginary-option'

>	gdb	--args	./prime	--imaginary-option	#	gdb	will	ignore	everything	after	--a

rgs



gdb	Commands
run

Starting	gdb	will	not	run	your	program	by	default.	You	must	use	the	 run
command	to	begin	execution.
Using	 run 	will	start	your	program	with	the	options	originally	specified,	or
you	can	pass	new	options	with	 run .

(gdb)	run	--different-option

If	your	project	is	recompiled,	each	 run 	will	automatically	reload	the	new
version.	Debugging	is	easier	if	you	don't	quit	gdb,	but	leave	it	running	in	a
separate	terminal.



#include	<stdio.h>

int	subtract	(int	a,	int	b)	{	return	a	-	b;	}

int	divide	(int	a,	int*	b)	{	return	a	/	*b;	}

int	do_math	(int	x,	int	y,	int	z)	{

				int	temp	=	subtract(x,	y);

				temp	=	divide(z,	&temp);

				return	temp;

}

int	main	()	{

				int	temp;

				temp	=	do_math(10,	10,	20);

				printf("Result:	%d\n",	temp);

				return	0;

}

Function	call	stack
(growing	to	the	right)

main

main	->	do_math

main	->	do_math	->
subtract

main	->	do_math

main	->	do_math	->
divide

gdb	Commands
backtrace ,	up ,	down ,	frame ,	print

While	your	program	is	running,	it	has	a	function	call	stack	that	is	built	up
with	frames	that	hold	parameters,	locals,	and	register	information	for
each	invocation.	Consider	math.c:



gdb	Commands
list ,	break ,	continue ,	step ,	next ,	set

Look	at	your	source	with	 list 	or	 list	<function>



gdb	Commands
list ,	break ,	continue ,	step ,	next ,	set

Look	at	your	source	with	 list 	or	 list	<function>

Stop	and	start	your	program	with	 break 	and	 continue



gdb	Commands
list ,	break ,	continue ,	step ,	next ,	set

Look	at	your	source	with	 list 	or	 list	<function>

Stop	and	start	your	program	with	 break 	and	 continue

Take	things	at	your	own	pace	with	 step 	(into)	and	 next



gdb	Commands
list ,	break ,	continue ,	step ,	next ,	set

Look	at	your	source	with	 list 	or	 list	<function>

Stop	and	start	your	program	with	 break 	and	 continue

Take	things	at	your	own	pace	with	 step 	(into)	and	 next

Make	a	change	to	variables	and	registers	with	 set



More	on	breakpoints
Generally	specified	by	filename:linenumber
Will	also	work	in	context
List	all	current	breakpoints	with	 info	breakpoints
Remove	with	 delete	<number> 	or	 disable	<number> 	until	later
Skip	over	working	code	with	breakpoints	on	either	side	and	 continue



Attendance:
http://tinyurl.com/c4cs-f16-dbug

http://tinyurl.com/c4cs-f16-dbug


Open	Problems	with	Debugging
Look	at	inf.c


