Debuggers

Pat Pannuto / Marcus Darden 1/16


http://creativecommons.org/licenses/by/4.0/
http://patpannuto.com/

Administrivia
e Check the score! Turning in Advanced Homeworks...

e 398 1s an experimental course.

e Course evaluations, PLEASE!

2/16



What Does gdb Do?

Yes

e Start your program (with options and arguments)

e Stop your program
e Allow you to see into registers and memory
e Allow you to change values manually during execution

3/16




What Does gdb Do?

Yes

e Start your program (with options and arguments)

e Stop your program
e Allow you to see into registers and memory
e Allow you to change values manually during execution

No

e MAGIC

4/16




How Do | gdb?

To debug a program with gdb, simply put gdb in front of the program, i.e.:

5/16



How Do | gdb?

To debug a program with gdb, simply put gdb in front of the program, i.e.:

> ./prime # running normally
> gdb ./prime # debugging the program with gdb

6/16



How Do | gdb?

To debug a program with gdb, simply put gdb in front of the program, i.e.:

> ./prime # running normally
> gdb ./prime # debugging the program with gdb

One annoying gotcha shows up if the program to debug takes any options.
The simple prime program does not, but if it did:

> ./prime --imaginary-option # running normally
> gdb ./prime --imaginary-option # will not work

gdb: unrecognized option '--imaginary-option'
> gdb --args ./prime --imaginary-option # gdb will ignore everything after --a

rgs

7/16



gdb Commands

run

o Starting gdb will not run your program by default. You must use the run

command to begin execution.
e Using run will start your program with the options originally specified, or

you can pass new options with run.
(gdb) run --different-option

e Ifyour project is recompiled, each run will automatically reload the new
version. Debugging is easier if you don't quit gdb, but leave it running in a
separate terminal.



gdb Commands

backtrace, up, down, frame, print

¢ While your program is running, it has a function call stack that is built up
with frames that hold parameters, locals, and register information for

each invocation. Consider math.c:

#include <stdio.h>
int subtract (int a, int b) { return a - b; }
int divide (int a, int* b) { return a / *b; }
int do_math (int x, int y, int z) {
int temp = subtract(x, y);
temp = divide(z, &temp);
return temp;
}
int main () {
int temp;
temp = do_math(10, 10, 20);
printf("Result: %d\n", temp);
return O;

Function call stack
(growing to the right)

main
main -> do_math

main -> do_math ->
subtract

main -> do_math

main -> do_math ->
divide

J/ 10



gdb Commands

list, break, continue, step, next, set

e Look at your source with list or list <function>

10/ 16



gdb Commands

list, break, continue, step, next, set
e Look at your source with list or list <function>

e Stop and start your program with break and continue

11/16



gdb Commands

list, break, continue, step, next, set
e Look at your source with list or list <function>
e Stop and start your program with break and continue

e Take things at your own pace with step (into) and next

12/16



gdb Commands

list, break, continue, step, next, set
e Look at your source with list or list <function>
e Stop and start your program with break and continue
e Take things at your own pace with step (into) and next

e Make a change to variables and registers with set

13/16




More on breakpoints

o Generally specified by filename:linenumber

e Will also work in context

o List all current breakpoints with info breakpoints

e Remove with delete <number> Or disable <number> until later

e Skip over working code with breakpoints on either side and continue

14/16



Attendance:
http://tinyurl.com/c4cs-f16-dbug

15/16


http://tinyurl.com/c4cs-f16-dbug

Open Problems with Debugging

Look at inf.c

16/ 16



