
Unit	Testing	and	Python

	Pat	Pannuto	/	Marcus	Darden

http://creativecommons.org/licenses/by/4.0/
http://patpannuto.com/


Test	Driven	Development	(TDD)



Test	Driven	Development	(TDD)



"Strictly	speaking"

1.	 Add	a	test
2.	 Run	the	test	suite

Note:	This	should	fail!
3.	 Write	the	minimum	code	to	pass

tests
4.	 Run	test	suite
5.	 Refactor	&	repeat

The	pragmatist's	view:

Add	tests
Run	tests
Write/fix	code

TDD	Methodology



"Strictly	speaking"

1.	 Add	a	test
2.	 Run	the	test	suite

Note:	This	should	fail!
3.	 Write	the	minimum	code	to	pass

tests
4.	 Run	test	suite
5.	 Refactor	&	repeat

The	pragmatist's	view:

Add	tests
Run	tests
Write/fix	code

TDD	Methodology

TDD	can	unfairly	focus	on	"micro-tests"
More	tests	!=	better	tests,	and	do	mean	more	maintenance



Behavior	Driven	Development



Writing	unit	tests	in	Python
Python??



Getting	started,	create	rpn.py
#!/usr/bin/env	python3

def	calculate(arg):

				pass

def	main():

				while	True:

								calculate(input("rpn	calc>	"))

if	__name__	==	'__main__':	#	Note:	that's	"underscore	underscore	n	a	m	e	..."

				main()

$	python3	rpn.py

rpn	calc>	type	anything	here	and	hit	enter

rpn	calc>



Quick	refresher	on	RPN	calculators
Also	a	"stack-based"	calculator
rpn	calc>	1	1	+

2.0

rpn	calc>	1	1	+	2	*

4.0

rpn	calc>	1	2	3	+

Error:	Malformed	expression



Create	test_rpn.py
import	unittest

import	rpn

class	TestBasics(unittest.TestCase):

				def	test_add(self):

								result	=	rpn.calculate("1	1	+")

								self.assertEqual(2,	result)

The	name	matters!	Note	that	 test_rpn.py 	tests	 rpn.py

$	python3	-m	unittest

F

======================================================================

FAIL:	test_add	(test_rpn.TestBasics)

----------------------------------------------------------------------

Traceback	(most	recent	call	last):

		File	"/home/marcus/rpn_calc/test_rpn.py",	line	8,	in	test_add

				self.assertEqual(2,	result)

AssertionError:	2	!=	None

----------------------------------------------------------------------

Ran	1	test	in	0.000s



Don't	forget	git !
$	wc	-l	*py

						11	rpn.py

							8	test_rpn.py

						19	total

#	This	is	19	lines	of	quality	code	here!

Yes,	we're	committing	before	anything	works

The	structure	is	good
The	test	harness	works



And	let's	not	forget	make 	while	we're
at	it
Because	why	type	19	letters	when	you	could
type	4?

test:

											python3	-m	unittest

.PHONY:	test



Live	coding
PLEASE	stop	me	and	ask	questions	if	you're
confused

PLEASE	yell	at	me	to	slow	down	if	I	go	too	fast

Implement	add
Need	a	stack	for	the	calculator
Need	to	tokenize	the	input
Need	to	process	tokens



Live	coding
PLEASE	stop	me	and	ask	questions	if	you're
confused

PLEASE	yell	at	me	to	slow	down	if	I	go	too	fast

Implement	add

Need	a	stack	for	the	calculator
Need	to	tokenize	the	input
Need	to	process	tokens

Add	test	for	subtract



Live	coding
PLEASE	stop	me	and	ask	questions	if	you're
confused

PLEASE	yell	at	me	to	slow	down	if	I	go	too	fast

Implement	add

Need	a	stack	for	the	calculator
Need	to	tokenize	the	input
Need	to	process	tokens

Add	test	for	subtract

Implement	subtract



Live	coding
PLEASE	stop	me	and	ask	questions	if	you're
confused

PLEASE	yell	at	me	to	slow	down	if	I	go	too	fast

Implement	add

Need	a	stack	for	the	calculator
Need	to	tokenize	the	input
Need	to	process	tokens

Add	test	for	subtract

Implement	subtract

Tests	can	expect	failure:	malformed	input



Live	coding
PLEASE	stop	me	and	ask	questions	if	you're
confused

PLEASE	yell	at	me	to	slow	down	if	I	go	too	fast

Implement	add

Need	a	stack	for	the	calculator
Need	to	tokenize	the	input
Need	to	process	tokens

Add	test	for	subtract

Implement	subtract

Tests	can	expect	failure:	malformed	input

On	your	own:	Tests	and	implementation	for	multiply,	divide



Some	fancy	Python	and	the	big
refactor
Motivation:	Unwieldy	if-else	chain	going

Gets	worse	as	more	operands	are	added
A	modular	design	will	allow	flexibility



Some	fancy	Python	and	the	big
refactor
Motivation:	Unwieldy	if-else	chain	going

Gets	worse	as	more	operands	are	added
A	modular	design	will	allow	flexibility

Goal:	Simplify	parser	code
Is	it	a	number?	Then	add	to	stack
Else	look	up	operator	and	execute



Attendance:	Push	your	code	to	gitlab
1.	 Go	to	https://gitlab.eecs.umich.edu
2.	 Click	"New	Project"
3.	 Name	your	project	exactly:	 c4cs-w17-rpn
4.	 Set	your	project	to	publically	visible	

5.	 Scroll	down	and	follow	the	directions	for	existing	folder	or	Git
repository

You	shouldn't	need	to	create	a	repo	(we	already	did	that)
Make	sure	you've	committed	all	your	changes!
git	remote	add	.....

git	push	-u	origin	master

Your	username	is	your	uniqname,	and	password	is	your	umich.edu
password

https://gitlab.eecs.umich.edu/

