
A Sampling of Other Things

 Pat Pannuto / Marcus Darden 1 / 21

http://creativecommons.org/licenses/by/4.0/
http://patpannuto.com/

Today
Profiling

Static Analysis

Developer Surveys

2 / 21

Pro�ling
What is it?

What's it good for?

When will you use it
(other than 281?)

What are its limitations

3 / 21

Getting started with perf
Install the tool

sudo apt install linux-tools-common linux-tools-`uname -r`

4 / 21

Getting started with perf
Install the tool

sudo apt install linux-tools-common linux-tools-`uname -r`

Write a simple program

int main() {

 return 0;

}

And profile it

$ make main

cc main.c -o main

$ perf record ./main

$ ls

main main.c perf.data

$ perf report

5 / 21

Getting something useful from perf
Need a program that takes some time

void child() {

 int i;

 for (i=0; i < 0xFFFFFFF; i++) { // 7 F's

 asm("nop;");

 }

}

int main() {

 int i;

 for (i=0; i < 0xFFFFFFF; i++) { // 7 F's

 asm("nop;");

 }

 child();

}

$ make main

cc main.c -o main

$ perf record ./main

$ perf report
6 / 21

Understanding a little how perf
works

$ perf record -F1 ./main

$ perf report

$ perf record -F100000 ./main

$ perf report

What does -F do?
(Try man perf-report , you can use / to search in man)

7 / 21

Can we pro�le library code?
Let's write a lot of 0's

#include <string.h>

...

for (i=0; i < 0xFFFFF; i++) { // 7 F's -> 5 F's

...

char buf[0xFFFF];

...

// asm("nop");

memset(buf, 0, 0xFFFF);

8 / 21

Some libraries are uglier :(
Add a printf

#include <stdio.h>

...

for (i=0; i < 0xFFFFF; i++) { // 7 F's -> 5 F's

...

// asm("nop");

printf("%d\n", i);

This can make pro�ling real code hard
Don't go down blind alleys (e.g. perf annotate --stdio)

9 / 21

(5-10 min) Try it out
Pick any prior code you've written and try
pro�ling it

$ perf record ./your_program

$ perf report

> The bigger the better

Are the results what you expect?

10 / 21

Closing thoughts on pro�ling
When should you pro�le your code?

How often should you pro�le your code?

11 / 21

Closing thoughts on pro�ling
When should you pro�le your code?

How often should you pro�le your code?

Other questions, thoughts about pro�ling?

perf is crazy powerful, some other cool stuff it can do
12 / 21

http://www.brendangregg.com/perf.html

Static Analysis
What is it?

Why is it useful?

When should you run it?

13 / 21

Just a little history �rst
Linting - the original static analysis

14 / 21

Just a little history �rst
Linting - the original static analysis

The point: The line between style and correctness is blurry

15 / 21

Just a little history �rst
Linting - the original static analysis

The point: The line between style and correctness is blurry

Today, the lines between compilers, linters, and
static analyzers are blurring

16 / 21

Static Analysis in action: cppcheck
sudo apt install cppcheck

Check a single �le:
mmdarden@c4cs-w18:~/share/281$ cppcheck my_compress.cpp

Checking my_compress.cpp...

[my_compress.cpp:445]: (error) Memory leak: dict

Checking my_compress.cpp: DEBUG...

Checking my_compress.cpp: DEBUG2...

Check a whole project for everything
mmdarden@c4cs-w18:~/share/281$ cppcheck --enable=all .

...

17 / 21

Static Analysis in action: scan-build
sudo apt install clang

This tool dynamically re-writes make rules (!)
Won't work if you've hardcoded g++ (should be $(CXX))

bad: bad.cpp

 g++ bad.cpp

good: good.cpp

 $(CXX) $(CPPFLAGS) $(CXXFLAGS) good.cpp

mmdarden@c4cs-w18:~/share/281$ scan-build make

...

scan-build: 7 bugs found.

scan-build: Run 'scan-view /tmp/scan-build-2016-11-30' to examine bug reports

18 / 21

(10 min) Try it out
Try running cppcheck and scan-build on an old
project

$ cppcheck --enable=all .

$ scan-build make

Did they �nd any errors?

Try running them on a current project

19 / 21

Developer Surveys
C4CS

StackOver�ow.com

20 / 21

Next Week
Special topics lectures
Should be fun :)

warning: end-of-semester slightly shrinks the window to
turn in Advanced Exercise 14
- Double check the OH on the course calendar!

21 / 21

