
Advanced Exercise – Week 3

Due: Before February 4, 10:00PM

Submission Instructions

To receive credit for this assignment you will need to stop by someone’s office hours, demo your running code, and
answer some questions.

1 Pretty PS1

Open a new terminal and try the following commands in order:

1 echo -e "\\033[44;3;70;38;5;214m"
2 <hit enter again>
3 PS1="Hello World -- "
4 echo -e "\\033[44;3;70;38;5;214m"
5 pwd
6 ls
7 pwd
8 echo -e "\\033[44;3;70;38;5;214m"
9 ls --color=none

10 pwd
11 reset

12 pwd
13 bash --norc
14 echo -e "\\033[44;3;70;38;5;214m"
15 ls
16 pwd
17 ls --color=auto
18 pwd
19 exit
20 PS1="\\033[44;3;70;38;5;214mHello Again -- "
21 ls

What happened to your terminal as you ran these commands? Play around with some other forms of PS1 and other
colors, see what happens. Why does calling ls sometimes reset things?

Create a custom PS1 for yourself. Look into some of the options for PS1, you will need to explain why you added
the options you did and decided against options you didn’t choose.

Extend your PS1 by writing a bash function the changes your prompt in a way that is not built-in to bash. Some
examples: Add an asterisk if your are in a git repository with uncommitted changes. Change the color if you are
currently in a shared directory (i.e. in a Dropbox folder). Change the color if the current directory will not be saved
across a reboot (i.e. if you are you are somewhere in the /tmp directory).

Submission checkoff:

� Explain what PS1 does

� Explain what you did to customize PS1 and why you chose the customizations that you did.

� Explain how your custom function works.

� Explain what the PS2 variable controls. Change PS2 from the default and show an example.

� Type set -x. Then type ls. Explain all of the output.

C4CS – W’17 1 / 3 Revision 1.0

2 UNDERSTANDING TAB COMPLETIONS

2 Understanding tab completions

Open a new terminal and try typing the following (note <tab> means press the tab key):

1 p<tab><tab>
2 y
3 <ctrl-c>
4 pi<tab><tab>
5 pin<tab><tab>
6 ping<tab><tab>
7 ping <tab><tab>
8 PATH=<enter>
9 p<tab><tab>

In addition to finding programs, tab completions can help you to use a program correctly by hinting at what
arguments a program accepts, try this:

10 # Open a new terminal (or manually set your PATH correctly again)
11 ping <tab><tab>
12 ping -<tab><tab>
13 ping -I<tab><tab>
14 ping -Q<tab><tab>
15 ping -Q 0 <tab><tab>

Today, most programs include tab completion support, but this is a remarkably manual process. Check out the
contents of the /usr/share/bash-completion/completions/ directory.

Now take a look at /usr/share/bash-completion/completions/ping. There’s a lot going on in this exam-
ple, but try to see if you can understand some of how the completions are working. What do you think the result of
ping -T <tab><tab> will be?

(Hint: || in bash means “if the previous thing failed, do the next thing”. What’s the output of echo $OSTYPE?
Will that equality pass or fail?)

Submission checkoff:

� Why is the list of tab completions different between lines 1 and 9?

� What is the default tab completion behavior for a program if no custom completion function has been written?

C4CS – W’17 2 / 3 Revision 1.0

3 TESTING MADE EASY

3 Testing Made Easy

When working on a project in EECS, you should be writing test cases to make sure your program is functioning
properly. Checking your test cases can be tedious, but fortunately for us, scripting can help make it really easy to
run your test cases and report which ones are passing and which ones are failing. Here, we will do just that.

Go ahead and download some files from this URL, extract them, and take a look. You should see 3 files. testPass.sh,
testFail.sh, and testTimeout.sh. You should not need to modify their contents.

> wget https://c4cs.github.io/static/w17/advanced/wk3-advanced-p3-files.tar.gz
> # eXtract Ze Files
> tar xzf wk3-advanced-p3-files.tar.gz

Write a few more shell scripts (2 or 3) with the string “test” somewhere in the name. These should run a program
of your choice and test the output to make sure the program is passing the test case. The program’s output can
be as simple as “Hello, World!”, but the test case must correctly check the output of the target program and signal
whether the target program has passed or failed.

Then, write a shell script which takes all files in the current directory with “test” somewhere in the name, runs each
of them, and reports whether the program passed or failed the test case by printing “PASSED”, “FAILED”. Your
script should also stop programs from runnning for more than 3 seconds and print “TIMEOUT”. Your individual test
case scripts should not print anything, but the test runner script should.

Submission checkoff:

� How does the exit command work? (Hint: How is this similar to return in C/C++ ?)

� How can a test case report to our test running script whether the target program passed or failed?

� How can you tell if a program is running too long?

� Can you demo your code?

C4CS – W’17 3 / 3 Revision 1.0

	Pretty PS1
	Understanding tab completions
	Testing Made Easy

